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Hybrid Parallelism and Visualization  



We achieve parallelism by 
parallelizing over pieces of data. 

PE = Processing Element 

Embarrassingly parallel 
vs. 

Non-embarrassingly parallel 
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  Results:  
 What has been demonstrated with hybrid parallelism 
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  Challenges:  
 What work still needs to happen? 
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supercomputer 

What is hybrid parallelism? 

PE #1 PE #2 PE #3 

PE 
#N-2 

PE 
#N-1 

PE  
#N 

…. 

Distributed-memory parallelism 

  Hybrid parallelism combines distributed- and 
shared-memory techniques. 

PE = Processing Element 

message  
passing 

Examples: MPI (Message Passing   
                    Interface) 

Shared-memory parallelism 

C2 C1 C3 

C5 C4 C6 

single node 

memory 
semaphores, 
mutexes 

Examples: pthreads, OpenMP,         
     OpenCL, CUDA? 
There are different types of 
shared-memory parallelism. 



Definitions 

  Core: a processing thread on a CPU 
  Node: a group of cores that share memory 
  Processing Element (PE): one instance (of many) of a 

distributed memory parallel program 



7 

Brief Historical Perspective 
  Mid 1970s-mid 1990s:  

  Vector machines: Cray 1 ... NEC SX 
  Vectorizing Fortran compilers help optimize 

a[i]=b[i]*x+c. 
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Massive programming  
investment!! 
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Brief Historical Perspective 
  Mid 1970s-mid 1990s:  

  Vector machines: Cray 1 ... NEC SX 
  Vectorizing Fortran compilers help optimize 

a[i]=b[i]*x+c. 
  Early 1990s-present: 

  The rise of MPP (massively parallel processing), 
based on the commodity microprocessor.  

  Message Passing Interface (MPI) becomes the gold 
standard for building/running parallel codes on 
MPPs. 

  Mid 2000s-present: 
  Rise of the multi-core CPU, GPU. AMD Opteron, 

Intel Nehalem, Sony Cell BE, NVIDIA G80, etc. 
  Large supercomputers comprised of lots of multi-

core CPUs. 

Massive programming  
investment? … not so much (yet) 

Massive programming  
investment!! 



Distributed Memory Parallelism 
(early 2000s) 

supercomputer 

CPU0 Node 0 
PE 0 

CPU0 Node 1 
PE 1 

CPU0 Node 2 
PE 2 

CPU0 Node 3 
PE 3 



De Facto Standard for Distributed-
Memory Parallelism 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

PE 1 

CPU0 Node 1 
PE 2 

CPU1 

PE 3 

CPU0 Node 2 
PE 4 

CPU1 

PE 5 

CPU0 Node 3 
PE 6 

CPU1 

PE 7 



Contrasting Hybrid Parallel and 
Non-Hybrid Parallel Versions 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

PE 1 

CPU0 Node 1 
PE 2 

CPU1 

PE 3 

CPU0 Node 2 
PE 4 

CPU1 

PE 5 

CPU0 Node 3 
PE 6 

CPU1 

PE 7 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

CPU0 Node 1 
PE 1 

CPU1 

CPU0 Node 2 
PE 2 

CPU1 

CPU0 Node 3 
PE 3 

CPU1 

Non-hybrid parallel version Hybrid parallel version 

Q: What do we lose when we ignore shared-
memory parallelism? 

A1: With two cores per node, probably not a lot. 
A2: Possibilities for saving on communication, 

memory, load balancing. 



On the (non-) transition to 
hybrid parallelism… 

  In our defense, 
 Biggest gains were in scalability with many PE’s 
 Putting two MPI tasks on a node wasn’t so bad 
 Lack of will/enthusiasm for big code re-writes 

  But… 



Research Overview For  
Hybrid Parallelism 

  Fundamental questions: 
 How to map algorithm onto a complex memory, communication 

hierarchy? 
 What is the right balance of distributed- vs. shared-memory 

parallelism? How does balance impact performance? 



Research Overview For  
Hybrid Parallelism 

  Many factors influence performance/scalability: 
 Synchronization overhead. 
 Load balance (intra- and inter-chip). 
 Communication overhead and patterns. 
 Memory access patterns. 
 Fixed costs of initialization. 
 Number of runtime threads. 
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The (Soon to Be) Good Old Days: 
Visualization as a Post-Processor 

Problem setup 
(i.e. meshing) 

Simulation Visualization 

Filesystem 

Week 1 
Week 2 

Week 2 

Week 5 Week 2 

Week 3 
Week 3 

The shift away from this model has been 
happening for a while. 



In Situ Processing 

  Defined: couple visualization and analysis routines 
with the simulation code (no I/O) 

  Pros: 
 No I/O! 
 Can access all the data 
 Computational power readily available 

  Cons: 
 Must know what you want to look for a priori 
  Increasing complexity 
 Constraints (memory, network, execution time) 



Some history behind this presentation… 

  “Why Petascale Visualization Will Change the 
Rules” (2007-2010) 

  “Why Exascale Visualization Will Change the 
Rules” (2011-2013) 

NSF Workshop on Petascale I/O 



The context for this talk… 

Petascale 
Visualization 

Exascale 
Visualization 

I/O Bandwidth I/O Bandwidth 
Data 

Movement 

Data Movement’s     
4 Angry Pups 

Hybrid 
Parallelism & 
Visualization 

5th Pup!! 

Will describe petascale and exascale wolves and 
pups in upcoming slides. 



The I/O Wolf 

  Large data visualization is 
almost always >50% I/O 
and sometimes 98% I/O 

  Amount of data to visualize 
is typically O(total mem) 

FLOPs  Memory  I/O 

Terascale machine 

“Petascale machine” 

  Two big factors:  
①  how much data you have to read 
②  how fast you can read it 

   Relative I/O (ratio of total memory and I/O) is key 



Exascale: a heterogeneous, distributed 
memory GigaHz KiloCore MegaNode system 

~3 

c/o P. Beckman, Argonne  

Data movement costs power 
and we have to get ~100X 

more power efficient. 



The Four Angry Pups 

Exascale 
Visualization 

I/O Bandwidth 
Data 

Movement 

Data Movement’s     
4 Angry Pups 

  In situ system design 
  Memory footprint 
  Programming languages 
  Exploration with in situ 
  (5th pup: hybrid parallelism) 



Exascale Hardware: Moore’s Law Is 
Alive and Well 

•  Moore’s Law was 
approximated to apply to 
clock speed… 
•  … that approximation 

no longer applies   
•  But transistor counts 

continue to climb.   
•  And this is equating to 

more and more cores 
per node… 
•  … how far will this 

go? 



Multi-core Versus Many-core 

Intel Pentium Dual-Core, 2006 NERSC Hopper machine, 24 cores per node 

NVIDIA K20 GPU Accelerator,  
2496 thread processors 

Intel Xeon Phi, 57-61 cores per node, 
each with 16-way vector compute 

There are qualitative differences between 
programming multi-core and many-core nodes. 

Pthreads, 
OpenMP 

CUDA 

Intel 
TBB 

Typically used as 
accelerator (no 

access to network) 

  Multi-core node: few dozens of cores per node 

  Many-core node: 100s to 1000s of cores per node 
OpenCL 



Definitions 

  Core: a processing thread on a CPU 
  Node: a group of cores that share memory 
  Processing Element (PE): one instance (of many) of a 

distributed memory parallel program 
  Multi-core: dozens of cores per node 
  Many-core: 100s to 1000s of cores per node 



Petascale and Exascale Solutions 

  Petascale: we must reduce I/O 
 Multi-resolution 
  In situ 
 Subsetting 
 Out-of-core 

  Exascale: we must minimize power & data movement 
  In situ 
 Power efficiency within a core 
 Power efficiency across nodes 



“The world as we know it” /  
“The world as we assume it” 

  We will need to run in situ 
 We will need to minimize impact on the simulation code: 

memory, execution time, communication bandwidth, 
power consumption 

  The HW already is multi-core, and increasingly 
many-core 
 We are going to have to adapt to the HW 

Hybrid parallelism will be necessary 
to achieve these goals. 
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Previous work on hybrid parallelism 

  Simulations: GPGPU, others 
  Visualization: lots of single GPU work 
  Hybrid parallelism + visualization: only a handful of 

studies. 
 This oversight is significant: parallel visualization and 

analysis algorithms have markedly different 
characteristics – computational load, memory access 
pattern, communication, idle time, etc. – than the other 
two categories.  
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Architecture Volume Rendering Particle Advection 
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Volume Rendering Studies 

  Volume rendering: use a combination of 
color and transparency to see an entire 
three-dimensional volume at one time. 

  Consists of 2 phases: sample & composite 
 Sampling: embarrassingly parallel 
 Compositing: parallel communication 

  Goal: sampling continues to work well, 
compositing gets faster 



Multi-core Volume Rendering 

  Study: use same HW, with hybrid parallelism and without 

  References: 
  Howison et al. “MPI-hybrid Parallelism for Volume Rendering on Large, Multi-

core Systems” In EGPGV’10 

  Howison et al. “Hybrid Parallelism for Volume Rendering on Large-, Multi-, and 
Many-Core Systems” in TVCG, Jan. 2012 



Many-core Volume Rendering 

  Study concerned with mapping the algorithm and 
optimizing performance, not with comparisons 
 Result: can use GPU cluster to do volume rendering of 

very large data sets. 

  References: 
  T. Fogal et al. Large Data Visualization on Distributed Memory Multi-

GPU Clusters. In HPG 2010. 



Studies on hybrid parallelism and 
visualization to date 

Architecture Volume Rendering Particle Advection 

Multi-core 

Many-core 



What is advection? 



Particle advection is a foundational 
visualization algorithm 

•  Advecting particles 
creates integral curves 



“Parallelize over data” strategy: 
parallelize over pieces and pass particles 

PE1 PE2 

PE4 PE3 
PE = Processing  

Element, i.e. 
an instance of 
the program.  

Other parallelization schemes, but 
this one is common. 

Very hard to get good efficiency, 
especially due to data dependency. 



Studies for Multi-core and  
Many-core Particle Advection  

  “No two particle advection problems are alike.” 
 Studies vary over: 

 Number of seed points. 
 Duration of advection. 
 Vector field complexity (via multiple data sets) 

  Both studies involve comparisons: 
 Multi-core: how does hybrid parallelism improve 

performance? 
 Many-core: if we have a GPU cluster, should we even 

use the GPUs? (latencies, slower processor cores) 



Multi-core: comparing speedups for 
hybrid parallelism 

Data Set #1 Data Set #3 Data Set #2 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Benefits in execution time and 
communication. 

Also studied other parallelization 
schemes which showed benefits in 

memory footprint. 



Multi-core comparisons: Gantt Chart  
MPI-Hybrid 

MPI-Only 

Time 

Time 

8 cores integrating 

2 cores integrating 

  References: D. Camp et al. “Streamline Integration Using MPI-Hybrid 
Parallelism on a Large Multicore Architecture.” TVCG Nov. 2011  



Many-core: studying 150 pairs of 
tests… 



Many-core: identifying the most 
dominant factors for performance 

  References: D. Camp et al. “GPU Acceleration of Particle Advection 
Workloads in a Parallel, Distributed Memory Setting.” EGPGV 2013 



Studies on hybrid parallelism and 
visualization to date 

Architecture Volume Rendering Particle Advection 
Production 

Usage 

Multi-core 

Many-core 



Multi-core production usage 

  Many visualization algorithms are embarrassingly 
parallel. 

  Further, nature of implementation for visualization 
software lends itself to hybrid parallel model. 
 One PE per node. 
 PE divides work among cores. 
 Cores can execute on their piece of data without 

needing to coordinate with other cores/PEs. 



Multi-core production usage 

  Savings in memory: 22.3 GB  20.7GB (=1.6GB) 
 Strictly because of fewer instances of the binary 

  Improvements in performance: 14s  8.4s (1.67X) 
 Due to improved load balancing 

  References: 
  Camp et al.  “Transitioning Data Flow-Based Visualization Software to 

Multi-Core Hybrid Parallelism.” Workshop on Data-Flow Execution 
Models for Extreme Scale Computing (DFM 2013) 



Many-core production usage 

  See future work…   
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Many-core is scary. 

  Two reasons legacy code may not map well to 
many-core space: 
 Language mismatch 
 Need to re-think algorithms for 100s to 1000s of cores 

per node. 



Many-core is scary. 

  New libraries in development for many-core 
visualization 
 DAX 
 EAVL 
 PISTON 
  (panel at SC12 & upcoming panel @ Vis13) 

  These libraries could be integrated with tools that 
have legacy approaches 

  Still need to explore hybrid parallelism!!  



More future work 

  New dimension of evaluation: power 
 What is the most power-efficient way to do hybrid 

parallel particle advection?  … we don’t know 



Summary, Part 1 (of 4) 

  Hybrid parallelism research questions: 
 How to map the algorithm to this complex architecture? 
 How to best take advantage of the architecture? 

  Hybrid parallelism has been demonstrated to 
improve: 
 Memory usage 
 Execution time 
 Communication bandwidth 



Summary, Part 2 (of 4) 

  The volume rendering and particle advection studies 
help understand the impacts of hybrid parallelism, 
but more work is needed for these algorithms. 
 And lots of work for other algorithms. 



Adding it all up 

  Today: 
 Simulation scientist: “can you help me visualize X?” 

  Soon: 
 Simulation scientist: “can you help me visualize X? … and I 

have the following constraints --- C1, C2, C3” 

  Example constraints: 
  Execution time 
 Memory usage 
  Power consumption 
 Communication bandwidth 



The primary message of this talk 

  We will soon live in a world where simulation 
scientists will ask us to solve problems with 
constraints. 

  Hybrid parallelism will help us meet those 
constraints, by lowering our requirements. 

  Our community has a lot of work to do ... let’s get to 
it!!! 
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Hybrid Parallelism and Visualization  


